qit.invariant

Local invariants

This module contains tools for computing and plotting the values of various gate and state local invariants.

Contents

state_inv(rho, k, perms)

Local unitary polynomial invariants of quantum states.

canonical_inv(U)

Canonical local invariants of a two-qubit gate.

canonical_inv_normalize(c[, fix_jittering])

Normalizes canonical local invariants into the default Weyl chamber.

makhlin_inv(U)

Makhlin local invariants of a two-qubit gate.

gate_max_concurrence(U)

Maximum concurrence generated by a two-qubit gate.

gate_adjoint_rep(U, dim[, only_local])

Adjoint representation of a unitary gate in the hermitian tensor basis.

gate_leakage_inv(U, dim[, Z, W])

Local degrees of freedom leaked by a unitary gate.

plot_makhlin_2q([ax, perfect_entanglers, …])

Plots the set of two-qubit gates in the space of Makhlin invariants.

plot_weyl_2q([ax, perfect_entanglers])

Plots the two-qubit Weyl chamber.

Functions

canonical_inv(U)

Canonical local invariants of a two-qubit gate.

canonical_inv_normalize(c[, fix_jittering])

Normalizes canonical local invariants into the default Weyl chamber.

gate_adjoint_rep(U, dim[, only_local])

Adjoint representation of a unitary gate in the hermitian tensor basis.

gate_leakage_inv(U, dim[, Z, W])

Local degrees of freedom leaked by a unitary gate.

gate_max_concurrence(U)

Maximum concurrence generated by a two-qubit gate.

makhlin_inv(U)

Makhlin local invariants of a two-qubit gate.

plot_makhlin_2q([ax, perfect_entanglers, …])

Plots the set of two-qubit gates in the space of Makhlin invariants.

plot_weyl_2q([ax, perfect_entanglers])

Plots the two-qubit Weyl chamber.

state_inv(rho, k, perms)

Local unitary polynomial invariants of quantum states.