qit.ho.wigner¶
- qit.ho.wigner(rho, alpha=None, *, res=(20, 20), lim=(- 2, 2, - 2, 2), method=0)¶
Wigner quasi-probability distribution.
- Parameters
rho (State) – harmonic oscillator state
alpha (array[complex]) – phase space points for which to compute the Wigner function
res (tuple[int]) – if
alpha is None
: number of points in the alpha grid, (nx, ny)lim (tuple[float]) – if
alpha is None
: limits of the alpha grid, (xmin, xmax, ymin, ymax)
- Returns
wigner(alpha), alpha_re, alpha_im
- Return type
array[float], array[float], array[float]
Returns the Wigner quasi-probability distribution \(W(\im{\alpha}, \re{\alpha})\) corresponding to the harmonic oscillator state
rho
given in the number basis.For a normalized state, the integral of W is normalized to unity.
NOTE: The truncation of the number state space to a finite dimension results in spurious circular ripples in the Wigner function outside a given radius. To increase the accuracy, increase the truncation dimension.