qit.markov

Born-Markov noise

This module simulates the effects of a heat bath coupled to a quantum system, using the Born-Markov approximation in the weak coupling limit. This results in a Lindblad-form master equation for the system.

The treatment in this module mostly follows [16].

MarkovianBath methods

desc([long])

Bath description string for plots.

set_cutoff(cutoff_type, cut_omega)

Set the spectral density cutoff.

setup()

Initializes the g and s functions, and the LUT.

build_LUT([om])

Build a lookup table for the spectral correlation tensor Gamma.

compute_gs(x)

Computes the spectral correlation tensor.

corr(x)

Bath spectral correlation tensor, computed or interpolated.

fit(delta, T1, T2)

Qubit-bath coupling that reproduces given decoherence times.

plot_spectral_correlation()

Plot the spectral correlation tensor components \(\gamma\) and \(S\) as a function of omega.

plot_spectral_correlation_vs_cutoff([boltz])

Plot spectral correlation tensor components as a function of cutoff frequency.

plot_bath_correlation()

Plot the bath correlation function \(C_{s,\omega_c}(t) = \frac{1}{\hbar^2}\langle B(t) B(0)\rangle\).

Functions

lindblad_ops(H, D, B)

Lindblad operators for a Born-Markov master equation.

ops(H, D)

Jump operators for a Born-Markov master equation.

superop(H, D, B)

Liouvillian superoperator for a Born-Markov master equation.

Classes

MarkovianBath(bath_type, stat, TU, T)

Markovian heat bath.