References

1

E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser. Quantum computation by adiabatic evolution. Report MIT-CTP-2936, Massachusetts Institute of Technology, 2000. arXiv:quant-ph/0001106.

2

Ethan Bernstein and Umesh Vazirani. Quantum complexity theory. In Proceedings of the Twenty-fifth Annual ACM Symposium on Theory of Computing, STOC '93, 11–20. New York, NY, USA, 1993. ACM. doi:10.1145/167088.167097.

3

P.W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In Foundations of Computer Science, 1994 Proceedings., 35th Annual Symposium on, 124–134. 1994. doi:10.1109/SFCS.1994.365700.

4

Michael A. Nielsen and Isaac L. Chuang. Quantum computation and quantum information. Cambridge University Press, New York, NY, USA, 2000. ISBN 0-521-63503-9.

5

Lov K. Grover. Quantum computers can search rapidly by using almost any transformation. Phys. Rev. Lett., 80:4329–4332, 1998. doi:10.1103/PhysRevLett.80.4329.

6

Holly K. Cummins, Gavin Llewellyn, and Jonathan A. Jones. Tackling systematic errors in quantum logic gates with composite rotations. Phys. Rev. A, 67:042308, 2003. doi:10.1103/PhysRevA.67.042308.

7

R. Cleve, A. Ekert, C. Macchiavello, and M Mosca. Quantum algorithms revisited. Proc. R. Soc. Lond. A, 454:339–354, 1998. doi:10.1098/rspa.1998.0164.

8

Max Hofheinz, H. Wang, M. Ansmann, Radoslaw C. Bialczak, Erik Lucero, M. Neeley, A. D. O'Connell, D. Sank, J. Wenner, John M. Martinis, and A. N. Cleland. Synthesizing arbitrary quantum states in a superconducting resonator. Nature, 459:546–549, 2009. doi:10.1038/nature08005.

9

Ville Bergholm and Jacob D. Biamonte. Categorical quantum circuits. J. Phys. A: Math. Theor., 44(24):245304, 2011. arXiv:1010.4840, doi:10.1088/1751-8113/44/24/245304.

10

Andrew M. Childs, Henry L. Haselgrove, and Michael A. Nielsen. Lower bounds on the complexity of simulating quantum gates. Phys. Rev. A, 68:052311, 2003. arXiv:quant-ph/0307190, doi:10.1103/PhysRevA.68.052311.

11

Laura Koponen, Ville Bergholm, and Martti M. Salomaa. A discrete local invariant for quantum gates. Quant. Inf. and Comp., 6:58, 2006. arXiv:quant-ph/0503141.

12

B. Kraus and J. I. Cirac. Optimal creation of entanglement using a two-qubit gate. Phys. Rev. A, 63:062309, 2001. arXiv:quant-ph/0011050, doi:10.1103/PhysRevA.63.062309.

13

Yuriy Makhlin. Nonlocal properties of two-qubit gates and mixed states, and the optimization of quantum computations. Quantum Information Processing, 1:243–252, 2002. arXiv:quant-ph/0002045v2, doi:10.1023/A:1022144002391.

14

Jun Zhang, Jiri Vala, Shankar Sastry, and K. Birgitta Whaley. Geometric theory of nonlocal two-qubit operations. Phys. Rev. A, 67:042313, 2003. arXiv:quant-ph/0209120, doi:10.1103/PhysRevA.67.042313.

15

Jacob D. Biamonte, Ville Bergholm, and Marco Lanzagorta. Tensor network methods for invariant theory. J. Phys. A: Math. Theor., 46:475301, 2013. arXiv:1209.0631, doi:10.1088/1751-8113/46/47/475301.

16

Heinz-Peter Breuer and Francesco Petruccione. The Theory of Open Quantum Systems. Oxford University Press, 2002.

17

S. Wimperis. Broadband, narrowband, and passband composite pulses for use in advanced NMR experiments. J. Magn. Reson. A, 109:221–231, 1994. doi:10.1006/jmra.1994.1159.

18

Götz S. Uhrig. Keeping a quantum bit alive by optimized $\ensuremath \pi $-pulse sequences. Phys. Rev. Lett., 98:100504, 2007. doi:10.1103/PhysRevLett.98.100504.

19

C. A. Ryan, J. S. Hodges, and D. G. Cory. Robust decoupling techniques to extend quantum coherence in diamond. Phys. Rev. Lett., 105:200402, 2010. doi:10.1103/PhysRevLett.105.200402.

20

William K. Wootters. Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett., 80:2245–2248, 1998. doi:10.1103/PhysRevLett.80.2245.

21

Ryszard Horodecki, Paweł Horodecki, Michał Horodecki, and Karol Horodecki. Quantum entanglement. Rev. Mod. Phys., 81:865–942, 2009. arXiv:quant-ph/0702225, doi:10.1103/RevModPhys.81.865.

22

Asher Peres. Separability criterion for density matrices. Phys. Rev. Lett., 77:1413–1415, 1996. doi:10.1103/PhysRevLett.77.1413.

23

Michał Horodecki, Paweł Horodecki, and Ryszard Horodecki. Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A, 223:1–8, 1996. arXiv:quant-ph/9605038, doi:10.1016/S0375-9601(96)00706-2.

24

Peter J. Love, Alec Maassen van den Brink, A.Yu. Smirnov, M.H.S. Amin, M. Grajcar, E. Il’ichev, A. Izmalkov, and A.M. Zagoskin. A characterization of global entanglement. Quantum Information Processing, 6:187–195, 2007. arXiv:quant-ph/0602143, doi:10.1007/s11128-007-0052-7.

25

A. J. Scott. Multipartite entanglement, quantum-error-correcting codes, and entangling power of quantum evolutions. Phys. Rev. A, 69:052330, 2004. arXiv:quant-ph/0310137, doi:10.1103/PhysRevA.69.052330.

26

David A. Meyer and Nolan R. Wallach. Global entanglement in multiparticle systems. J. Math. Phys., 43:4273–4278, 2002. doi:10.1063/1.1497700.

27

Reinhard F. Werner. Quantum states with einstein-podolsky-rosen correlations admitting a hidden-variable model. Phys. Rev. A, 40:4277–4281, 1989. doi:10.1103/PhysRevA.40.4277.

28

Roger B. Sidje. \sc Expokit. A software package for computing matrix exponentials. ACM Trans. Math. Softw., 24(1):130–156, 1998. doi:10.1145/285861.285868.

29

Francesco Mezzadri. How to generate random matrices from the classical compact groups. Notices of the AMS, 54:592, 2007. arXiv:math-ph/0609050.