qit.utils.fermion_ladder

qit.utils.fermion_ladder(*args)

Fermionic ladder operators.

Parameters

n (int) – number of fermionic modes

Returns

fermionic annihilation operators (f1,f2,,fn)

Return type

array[object]

Returns the fermionic annihilation operators for a system of n fermionic modes in the second quantization.

The annihilation operators are built using the Jordan-Wigner transformation for a chain of n qubits, where the state of each qubit denotes the occupation number of the corresponding mode. First define annihilation and number operators for a lone fermion mode:

σ:=(σx+iσy)/2,n:=σ+σ=(Iσz)/2,σ|0=0,σ|1=|0,n|k=k|k.

Then define a phase operator to keep track of sign changes when permuting the order of the operators: ϕk:=j=1k1nj. Now, the fermionic annihilation operators for the n-mode system are given by

fk:=(1)ϕkσk=(j=1k1σzj)σk.

These operators fulfill the required anticommutation relations:

{fj,fk}=0,{fj,fk}=Iδjk,fkfk=nk.