Previous topic

Demos and examples (qit.examples)

This Page


[1]Ethan Bernstein and Umesh Vazirani. Quantum complexity theory. In Proceedings of the Twenty-fifth Annual ACM Symposium on Theory of Computing, STOC ‘93, 11–20. New York, NY, USA, 1993. ACM. doi:10.1145/167088.167097.
[2]Jacob D. Biamonte, Ville Bergholm, and Marco Lanzagorta. Tensor network methods for invariant theory. J. Phys. A: Math. Theor., 46:475301, 2013. arXiv:1209.0631, doi:10.1088/1751-8113/46/47/475301.
[3]Heinz-Peter Breuer and Francesco Petruccione. The Theory of Open Quantum Systems. Oxford University Press, 2002.
[4]Andrew M. Childs, Henry L. Haselgrove, and Michael A. Nielsen. Lower bounds on the complexity of simulating quantum gates. Phys. Rev. A, 68:052311, 2003. arXiv:quant-ph/0307190, doi:10.1103/PhysRevA.68.052311.
[5]R. Cleve, A. Ekert, C. Macchiavello, and M Mosca. Quantum algorithms revisited. Proc. R. Soc. Lond. A, 454:339–354, 1998. doi:10.1098/rspa.1998.0164.
[6]Holly K. Cummins, Gavin Llewellyn, and Jonathan A. Jones. Tackling systematic errors in quantum logic gates with composite rotations. Phys. Rev. A, 67:042308, 2003. doi:10.1103/PhysRevA.67.042308.
[7]E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser. Quantum computation by adiabatic evolution. Report MIT-CTP-2936, Massachusetts Institute of Technology, 2000. arXiv:quant-ph/0001106.
[8]Lov K. Grover. Quantum computers can search rapidly by using almost any transformation. Phys. Rev. Lett., 80:4329–4332, 1998. doi:10.1103/PhysRevLett.80.4329.
[9]Max Hofheinz, H. Wang, M. Ansmann, Radoslaw C. Bialczak, Erik Lucero, M. Neeley, A. D. O’Connell, D. Sank, J. Wenner, John M. Martinis, and A. N. Cleland. Synthesizing arbitrary quantum states in a superconducting resonator. Nature, 459:546–549, 2009. doi:10.1038/nature08005.
[10]Michał Horodecki, Paweł Horodecki, and Ryszard Horodecki. Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A, 223:1–8, 1996. arXiv:quant-ph/9605038, doi:10.1016/S0375-9601(96)00706-2.
[11]Ryszard Horodecki, Paweł Horodecki, Michał Horodecki, and Karol Horodecki. Quantum entanglement. Rev. Mod. Phys., 81:865–942, 2009. arXiv:quant-ph/0702225, doi:10.1103/RevModPhys.81.865.
[12]B. Kraus and J. I. Cirac. Optimal creation of entanglement using a two-qubit gate. Phys. Rev. A, 63:062309, 2001. arXiv:quant-ph/0011050, doi:10.1103/PhysRevA.63.062309.
[13]Peter J. Love, Alec Maassen van den Brink, A.Yu. Smirnov, M.H.S. Amin, M. Grajcar, E. Il’ichev, A. Izmalkov, and A.M. Zagoskin. A characterization of global entanglement. Quantum Information Processing, 6:187–195, 2007. arXiv:quant-ph/0602143, doi:10.1007/s11128-007-0052-7.
[14]Yuriy Makhlin. Nonlocal properties of two-qubit gates and mixed states, and the optimization of quantum computations. Quantum Information Processing, 1:243–252, 2002. arXiv:quant-ph/0002045v2, doi:10.1023/A:1022144002391.
[15]David A. Meyer and Nolan R. Wallach. Global entanglement in multiparticle systems. J. Math. Phys., 43:4273–4278, 2002. doi:10.1063/1.1497700.
[16]Francesco Mezzadri. How to generate random matrices from the classical compact groups. Notices of the AMS, 54:592, 2007. arXiv:math-ph/0609050.
[17]Michael A. Nielsen and Isaac L. Chuang. Quantum computation and quantum information. Cambridge University Press, New York, NY, USA, 2000.
[18]Asher Peres. Separability criterion for density matrices. Phys. Rev. Lett., 77:1413–1415, 1996. doi:10.1103/PhysRevLett.77.1413.
[19]A. J. Scott. Multipartite entanglement, quantum-error-correcting codes, and entangling power of quantum evolutions. Phys. Rev. A, 69:052330, 2004. arXiv:quant-ph/0310137, doi:10.1103/PhysRevA.69.052330.
[20]P.W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In Foundations of Computer Science, 1994 Proceedings., 35th Annual Symposium on, 124–134. 1994. doi:10.1109/SFCS.1994.365700.
[21]Roger B. Sidje. \sc Expokit. A software package for computing matrix exponentials. ACM Trans. Math. Softw., 24(1):130–156, 1998. doi:10.1145/285861.285868.
[22]S. Wimperis. Broadband, narrowband, and passband composite pulses for use in advanced NMR experiments. J. Magn. Reson. A, 109:221–231, 1994. doi:10.1006/jmra.1994.1159.
[23]William K. Wootters. Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett., 80:2245–2248, 1998. doi:10.1103/PhysRevLett.80.2245.
[24]Jun Zhang, Jiri Vala, Shankar Sastry, and K. Birgitta Whaley. Geometric theory of nonlocal two-qubit operations. Phys. Rev. A, 67:042313, 2003. arXiv:quant-ph/0209120, doi:10.1103/PhysRevA.67.042313.